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Hydrogen bonding is one of the fundamental interactions in
chemistry and biology. The structures of water and DNA are but
two examples of the profound influence of the H-bond in determin-
ing the structure of matter. In addition to structure, H-bonds are
also actively involved in chemical reactivity.1 Despite the likely
importance of zero point energy effects involving hydrogen, their
explicit role in determining the structure of even simple H-bonded
liquids has yet to be fully rationalized. Accordingly, herein, we
analyze the influence of nuclear quantum (zero point energy) effects
on the H-bonding in liquid hydrogen fluoride (HF) around its boiling
point.2

HF is the simplest and one of the strongest known H-bonded
systems. It, therefore, represents an important prototype for probing
hydrogen bonding. H-bonds determine the structure of HF in all
phases. For example, solid3 and, to a lesser extent, liquid HF4,5

consist of zigzag H-bonded chains, whereas the vapor phase is
characterized by oligomers and cyclic clusters.6

Liquid HF has been investigated extensively using a variety of
computational techniques.7-10 Most recently, density functional
theory (DFT)-based Car-Parrinello (CP) molecular dynamics
(MD)11 have been successfully employed to study the liquid at
ambient8,10 and supercritical conditions.9 We extend these studies
and include quantum corrections to equilibrium properties arising
from the nuclear degrees of freedom via path-integral (PI) simula-
tions,12,13which have been demonstrated to reliably include quantum
corrections in a wide range of H-bonded systems.14 In the ensuing
discussion, we will refer to liquid HF studied with classical CPMD
and PICPMD asC- andQ-systems, respectively.

In agreement with previous CPMD simulations,8-10 liquid HF
is characterized by bent H-bonded zigzag chains of different length,
which are entangled with each other and occasionally branched.
The description of the nuclear motion (classical or PI) does not
seem to influence the length and the spatial arrangement of the
chains: the H‚‚‚F-H angle inC andQ is, respectively, 115° and
114° with an rms amplitude of about 35° in both systems.

Quantitative information about the liquid structure can be
obtained from the analysis of the radial distribution functions,g(r).
The functions related to hydrogen bonding aregFF andgHF . The
former has a pronounced peak at about 2.5 Å that corresponds to
the F‚‚‚F distance of two H-bonded molecules. As can be seen from
Figure 1a, this distance inQ (2.49 Å) is shorter than that inC
(2.52 Å). Surprisingly, the peak inQ is sharper, indicating a more
pronounced localization of two H-bonded F atoms. This finding is
counterintuitive because one is first led to suppose that nuclear
quantum (zero point energy) effects inQ should result in a
broadening of the F‚‚‚F peak.

A rationale for this behavior can be found in the analysis ofgHF

(Figure 1b). Here, the first peak, which corresponds to the
intramolecular H‚‚‚F distance, has the expected trend on going from
C to Q. In fact, because of the quantum delocalization of the

protons, the peak broadens and overlaps with the peak due to the
H‚‚‚F intermolecular H-bond. The average H-F bond length inC
is 0.965 Å, which is 0.01 Å shorter than that inQ.16 In Q, one also
observes a shorter H-bond distance than inC (1.52 Å instead of
1.58 Å), due to an enhanced intermolecular interaction, which in
turn leads to a reduction of the F‚‚‚F nearest neighbor distance.
Because of the quantum delocalization of the protons, theQ-system
F-H proton gets closer to the F atom of a nearby molecule,
enhancing the H-bonding and giving rise to a sharpening of the
F‚‚‚F peak.

ThegHH function (not shown) has the characteristic peak, which
corresponds to the nearest neighbor intrachain H atoms. InQ, this
peak appears at a shorter distance (2.14 Å) than inC (2.18 Å), an
observation which also reflects the behavior just described above.

To characterize more quantitatively the shortening of the H-bond,
we have investigated the wave functions obtained in the simulations.
To this end, the center of charge of the maximally localized Wannier
functions (WFC)17 has been used to facilitate the interpretation of
the electronic structure in terms of doubly occupied localized
orbitals. This method has been shown to provide a vivid picture of
the H-bond in liquid water.18

Unlike the formation of covalent bonds, which involves massive
shifts of electron density, the rearrangement that occurs as a
consequence of an H-bond is more subtle. Indeed, while the shifts
of electron density that occur are relatively small, they are
characteristic of H-bond formation: the larger the shift, the stronger
the H-bond. Generally, there is an overall shift of electron density
from the proton acceptor molecule to the donor. This density is
drawn not only from the lone pair participating in the H-bond, but
also from the entire molecule.19

In Figure 2, the position of the WFCs calculated for the
monomer, dimer, and cyclic hexamer is reported along with the
g(r) function of the pair F atom-WFC computed in the liquid phase.
From the WFCs calculated for the clusters in vacuo, the above-
mentioned density shift is clearly visible. In fact, as can be seen,
the σ bond WFC gets closer to the F atom on passing from the
monomer to the hexamer, whereas the WFC of the acceptor fluorine
lone pair moves further away. This corresponds to a net shift of
density toward the donor molecule. The cyclic hexamer, where each
molecule donates and receives one H-bond, approaches the situation
observed in the liquid phase.
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Figure 1. Radial distribution functions of liquid HF at 290 K: (a) F-F
and (b) H-F. Dashed line, classical CPMD; solid line, PI-CPMD.
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In liquid HF, because of the thermal fluctuations, there is a quite
broad distribution of WFC positions. However, three distinct peaks
are visible, which correspond to covalent bond orbitals, H-bond
acceptor lone pairs, and nonbonded lone pairs, respectively. The
magnitude of the electron density shift is larger in theQ- than in
the C-system. In turn, this corresponds to a stronger H-bond. We
observe in passing that the nonbonded lone pairs’ distribution does
not depend on the description of the nuclei.

The observed density shift going progressively from the gas phase
to the condensed phase produces a larger and larger separation
between the WFCs and the positive charged hydrogen nucleus and,
therefore, leads to an increase of the net molecular dipole
moment.17,18 The computed monomer dipole moment is 1.82 D,
which is in fairly good agreement with the experimental value of
1.91 D.20 The dipole moment drastically increases from the
monomer to the liquid. This parallels the trend of water dipole
moment as calculated via DFT/BLYP-based ab initio MD.18a,bThe
average dipole moment in theC and Q simulations is 2.75 and
2.95 D, respectively. Thus, inQ there are stronger electrostatic and
polarization interactions, which contribute to the shortening of the
F‚‚‚F intrachain distance. In these chains, the lone pairs are
topologically distinct, so the orientation of the dipole moment does
not coincide with the molecular axis. The average angle between
the dipole moment and the F-H direction is 11° in both simulations,
with an rms dispersion of 5°.

Surprisingly, the results presented in this Communication indicate
a shorter H-bond in liquid HF when the nuclei are treated as
quantum particles. Unfortunately, there are no experimental radial
distribution functions of HF with which to compare our calculations.
To date, experimental structural data have only been reported for
DF. In this regard, our calculated differences betweenC andQ are
comparable to the current experimental resolution of the structure
factor determined for DF.4,5,21 We are aware that our calculations
could be affected by several errors. However, we can be confident
that the approximations made do not change the qualitative picture
given herein.22

In conclusion, our findings open important questions regarding
the role of nuclear quantum effects on the structure of hydrogen-
bonded systems. The present results suggest that in the case of
strongly H-bonded liquids nuclear quantum effects can lead to
stronger H-bonds. Taken at face value, this effect is likely to be
present in biological systems, including proteins, enzymes, DNA,
and RNA, where strong H-bonds are involved.1 More calculations
and experiments are deemed necessary to clarify this issue.
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Figure 2. Radial distribution functions of the F atom-WFC pairs computed
at 290 K from 15 configurations equally spaced in time. Dashed line,
classical CPMD; solid line, PI-CPMD. The position of the WFCs with
respect to the F atom calculated in vacuo for the monomer (empty symbols),
dimer (gray-filled symbols), and cyclic hexamer (black-filled symbols) is
also shown. Circles, squares, and triangles indicate covalent bond orbitals
(b), H-bond acceptor lone pair (lp1), and nonbonded lone pair (lp2),
respectively. A and D stand for acceptor and donor, respectively.
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